Fuel Modification to Facilitate Future Combustion Regimes?

David E. Foster Phil and Jean Myers Professor Engine Research Center

University of Wisconsin - Madison

DEER Conference, Chicago, IL, August 23, 2005

Question

•Can new fuels, or modifications to fuel composition, promote the achievement and expansion of operating regimes for advanced combustion technologies, such as LTC?

My answer: I think so!

Simplified Global Statements

- Key to LTC:
 - Achieve appropriate mixing of fuel and oxidizer prior to the ignition chemistry progressing to auto-ignition, which is to occur within some designated time during the cycle
- Many different scenarios have been proposed for achieving this
 - HCCI, PPC, MK, DCDC, CAI, ...
- These different scenarios are really different approaches to mold the engine operation around the fuel's physical and auto-ignition characteristics

Background

- •LTC is controlled by ignition kinetics
- •Ignition kinetics are dependent on fuel composition

Operating ranges at Tin = 360K

Correlation between Chemical Composition and LTHR

Even in the case of same Research Octane Number Fuels, the heat release rates are different because of...

- (1) The LTHR characteristics of paraffins
- (2) Inhibitor effects of aromatics and some naphthenes and olefins

SAE 2005-01-0138

Correlation between Chemical Composition and HTHR

 $HTHR\ CA50 = G(LTHR\ CA50,\ LTHR\ heating\ value)$

Low Temperature Heat Release

- LTHR CA50
- LTHR Heating Value

High Temperature Heat Release

• HTHR CA50

(dp/d θ)_{max} vs HTHR:Linear

COV_{IMEP}% vs HTHR: Quadratic

Fuel Composition

- •Fuel Chemicals
- HC types

Engine Performance

- Maximum dp/d θ
- COV_{IMEP}%

SAE 2005-01-0138

Correlation between Chemical Composition and HTHR

Chemicals that advance HTHR

Chemicals that delay HTHR

Correlation between Chemical Composition and HTHR

 $HTHR\ CA50 = G(LTHR\ CA50,\ LTHR\ heating\ value)$

Low Temperature Heat Release

- LTHR CA50
- LTHR Heating Value

High Temperature
Heat Release

• HTHR CA50

 $(dp/d \theta)_{max}$ vs HTHR:Linear

COV_{IMEP}% vs HTHR: Quadratic

n-paraffins
iso-paraffins
olefins
naphthenes
aromatics

he Performance

 $\mathsf{lum}\;\mathsf{dp/d}\;\theta$

• COV_{IMEP}%

SAE 2005-01-0138

ı

Fuel Composition

- •Fuel Chemicals
- HC types

Ultimately, achieving LTC is a combination (matching) of engine technology and fuel chemistry

Proposed Fuel and Engine Characteristics for Versatile LTC Operation

- Engine Characteristics
 - Valve train flexibility
 - Direct Injection, advanced injection capabilities
 - Intake charge cooling
 - **—**
- Fuel Characteristics
 - Moderate to high volatility
 - Low Cetane number
 - Low Octane number

Can these characteristics be tailored through the appropriate blend of naphthenes, olefins and iso-parafins?

Proposed Fuel and Engine Characteristics for Versatile LTC Operation

- Engine Characteristics
 - Valve train flexibility
 - Direct Injection, advanced injection capabilities
 - Intake charge cooling
 - **—**
- Fuel Characteristics
 - Moderate to high volatility
 - Low Cetane number
 - Low Octane number

